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Abstract

In fractured porous media, interactions between immiscible fluid phases within the fractures place a critical control on
system behavior. A key component of the interactions is the geometry, or structure, of the respective phases. Over the past 10
years, process-based experiments have greatly increased our understanding of phase structure development within individual
fractures. In the past 2 years, new calculational models that incorporate some of this understanding have further demonstrated
the influence of phase structure on flow and transport within the phases, and inter-phase mass transport. These computational
models can now be applied to consider the efficacy and parameterization of constitutive relations for a subset of two-phase
situations. Full understanding of the morphology, connectivity, and temporal dynamics of phase structure in rough-walled
fractures is yet to be developed, and is a promising area for further research. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flow and transport in fractured porous media are
challenging problems, primarily because two systems
with extremely different hydraulic properties (frac-
tures, porous media) coexist and interact. Flow and
transport occur, both within each system, and between
the two. This first level of complexity is further exac-
erbated when more than one fluid phase is present;
then, capillarity, accessibility, and gravity compete
with viscous forces to control hydraulic properties of
the system. For example, capillarity alone can reverse
single-phase behavior; i.e. a flow conduit may be
transformed into a flow barrier for one of the phases.
For multi-phase, immiscible fluid flow conditions,
phase structure within individual fractures and the
fracture network (i.e. the geometry that is filled by
each phase) ultimately controls the fluid press-
ure-saturation relations, permeability to each phase,
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solute dispersion within each phase, and inter-phase
mass transfer; in addition, fracture phase structure
also controls flow and transport through the sur-
rounding porous matrix blocks by affecting their hy-
draulic contact [1°®,2°°].

Considering the complexity of flow and transport in
fractured porous media, and that phase structure
within individual fractures places a critical control on
system response, we focus in this paper on the rich
variety of behavior that occurs within a single fracture
at the sub-m scale under conditions where two phases
interact. We constrain our discussion to neglect ex-
change with the adjacent matrix, reactive transport,
more than two phases, film flow, and phase transi-
tions; we also consider only incompressible flow in the
absence of thermal and mechanical effects. We begin
with capillary-dominated phase displacement, and
then add the influence of viscous and gravity forces.
Next, we consider flow and transport within a phase,
and conclude with inter-phase mass transfer. Because
the study of two-phase flow in fractures is embryonic,
we explain the state of understanding in each of these
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topics, and use recently developed modeling capabili-
ties to illustrate the important control of phase struc-
ture throughout.

2. Phase displacement processes: capillary-dominated

Under quasi-static flow conditions, phase structure
in a horizontal fracture will be controlled by capillary
forces; in general, the non-wetting phase will be found
in large apertures and the wetting phase in small
ones. The Laplace—Young equation relates surface
tension (7") and interfacial curvature to the pressure
jump across the curved interface (A P):

AP=T(—+—) (1)

where r; and r, are the two principle radii of curva-
ture. The first principal radius of curvature (r,) is
taken normal to the plane of the fracture, and is given
by r, =b/2cosa, where b is the local aperture, and «
is the fluid—fluid—solid contact angle. Curvature in
the plane of the fracture (r,) is considered not to
contact the fracture surface, and therefore is not
constrained by a contact angle. If it is assumed that
interfacial curvature in the plane of the fracture is
negligible (r, — ), and that lack of access does not
limit the distribution of phases, then phase structure-
pressure relationships will conform to a two-dimen-
sional standard percolation (SP) process. A variety of
interesting results comes from application of SP the-
ory to a random aperture field; the most important
are that the phase structure is fractal, and that a
critical pressure exists where one phase forms an
infinite connected cluster isolating the other phase
[3,4°].

Experimental investigations of quasi-static phase
displacement in horizontal fractures have shown irre-
versible and hysteretic behavior [5,6®], and thus ques-
tion the validity of SP methods for predicting phase
structure. The assumption of reversible equilibrium
inherent in SP requires all apertures to be in a state
of mutual and instantaneous communication. Three
main communication processes may exist; flow
through the matrix that connects all apertures, film
flow along the fracture walls, and diffusional processes.
To satisfy equilibrium, phase displacement must occur
slowly with respect to the fastest communication
process. For a large number of situations, either com-
munication processes do not exist, or, relative to
them, phase displacement occurs rapidly. In such situ-
ations, accessibility places an additional control on
phase structure. In order for an aperture to be acces-
sible to a given phase, it must be adjacent to an
aperture that is not only occupied by that phase, but

is also connected to a source (or sink). Placing this
condition on both phases leads to entrapment; i.e.
apertures disconnected from a sink cannot escape and
may not be replaced by the other phase. To include
phase accessibility, an invasion percolation (IP)
process, as introduced by Wilkinson and Willemsen
[7] can be used in combination with Eq. (1), once
again neglecting in-plane interfacial curvature (r, -
). However, experimental evidence also shows IP to
be deficient, as quasi-static displacements in horizon-
tal analog fractures often exhibit macroscopic fronts,
decreased phase entrapment on invasion, and com-
pact entrapped-phase dissolution [8,9°,10°].

Recent work has shown that deficiencies in IP may
be overcome by specifically including the influence of
in-plane curvature (r,) in the calculation of invasion
pressure [8,11*®]. Modification of the IP process to
include the dynamic calculation of in-plane curvature
(MIP) at the evolving interface produces phase struc-
tures that closely resemble experimental observations,
for both wetting and non-wetting displacements. The
importance of in-plane curvature was considered sys-
tematically by Glass et al. [11*®]; they defined a
simplified pressure equation, in which a dimensionless
curvature number (C) weighs the relative strength of
the two curvatures (r,,r,). Simulations show that as C
increases from 0 (the IP limit), the phase displace-
ment structure transitions from highly complicated to
macroscopically smooth. To illustrate this influence,
Fig. 1 shows displacement simulations on a spatially
correlated random aperture field with a factor of two
difference in C. The full sensitivity study shows that
fracture phase saturations, the number of entrapped
phase clusters, and the maximum entrapped cluster
size are not only highly dependent on C, but exhibit a
differential response to C between wetting and non-
wetting invasion that is independent of contact angle
hysteresis. Therefore, macroscopic effective proper-
ties or models dependent on underlying phase struc-
ture (e.g. pressure-saturation relations, relative
permeability, solute dispersion, inter-phase mass
transfer, fracture-matrix interaction) will exhibit
strong functional dependency on C that is different
for wetting and non-wetting invasion.

3. Phase displacement processes: addition of gravity
and viscous forces

Inclusion of gravity and viscous forces into the
displacement process can act to either destabilize the
front (i.e. initiate gravity or viscous fingering), or
decrease capillary-controlled complication (i.e. fur-
ther stabilize) to produce a flattened front with less
phase entrapment behind. In the absence of capillary
forces, linear stability analysis suggests that displace-
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C=04

Fig. 1. Phase displacement with only capillary forces: influence of curvature number, C. An MIP model including both aperture induced and
in-plane curvature is used to simulate wetting phase invasion from the left in a spatially correlated random aperture field (o/{b) of 0.24 and
size of ~ 160 by ~ 350 spatial correlation lengths) measured by Detwiler et al. [38®®]. Long and right sides of the fracture are open for
defending non-wetting phase to escape. Black denotes entrapped non-wetting phase, while the color sequence
purple—blue—green—yellow—orange—red denotes invasion order. The top invasion structure is for C = 0.2, while the bottom is for C = 0.4 and
show final wetting phase saturations of 0.47 and (.77, respectively. The factor of two increase in C can be interpreted as a corresponding

increase in mean aperture or contact angle, or decrease in the variance or correlation length of the random field [11®®].

ment of one incompressible fluid (subscript ,) by
another (subscript ;) in a smooth-walled fracture
(Hele—Shaw cell) will be subject to gravity or viscous
instability when:

U
?(Pq — 1y) +gcosb(p; —py) >0 2

where p is the fluid dynamic viscosity, p the fluid
density, U the interfacial velocity, g the gravitational
acceleration, k the intrinsic permeability, and 6 the
included angle between vertically downwards and the
direction of displacement along the fracture plane.

While very simplistic, this analysis contains the rudi-
ments of both the destabilizing and stabilizing influ-
ences. Most research in the fluid mechanics literature
has concentrated on viscous-driven fingering in
smooth-walled Hele—Shaw cells in the absence of
gravity (e.g. [12]). To our knowledge, studies of viscous
fingering in variable-aperture fractures have yet to be
accomplished.

Gravity-driven fingering has been studied in rough-
walled analog fractures for air/water systems by
Nicholl et al. [13-16°®]. In initially dry fractures,
experiments and dimensional analysis show that the
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velocity of fingers formed under steady supply condi-
tions display a functional relationship with volumetric
flow rate, gravitational gradient, and finger width. In
turn, finger width is controlled by finite amplitude
perturbations present at initiation (which is influ-
enced by flow rate and gravitational gradient). Fingers
formed in an initially dry aperture field provide pref-
erential pathways for subsequent fingers [13,15]. In
contrast to observations in porous media, where uni-
form initial moisture has been shown to stabilize
displacement of the wetting phase (e.g. [17]), initial
moisture does not necessarily stabilize fracture flow
where the initial moisture structure is poorly con-
nected [15]; however, enhanced connection associated
with micro roughness or a wet matrix may provide a
stabilizing influence.

Flow pulsation and/or blob flow in fractures were
noted in both early, gravity-driven fingering studies
[13-16°*] and during the simultaneous flow of two
fluids in horizontal fractures [18,19°]. In both of these
situations, local interactions of the wetting and non-
wetting fluids yield potentially chaotic system dy-
namics [2°®]. Several more recent studies have fur-
ther underscored the importance of both gravity and
viscous forces to create complicated dynamics [20°]
and mobilize entrapped phase [21]. In all of these
studies, it is assumed that fingertip length, flow pulsa-
tion, or mobilization are dependent on simple ratios
of capillary, gravity, and viscous forces. However,
Zhong et al. [22°] have recently shown the mobiliza-
tion of entrapped phase in a horizontal fracture to be
‘path’ dependent. They found that when the impor-
tance of capillary relative to viscous forces is reduced,
either by increasing viscous forces (flow rates), or by
decreasing capillary forces with a miscible displace-
ment (lowering of interfacial surface tension with a
surfactant flood), differences in active micro-scale
mobilization processes lead to different final en-
trapped-phase saturations and structures for the same
capillary /viscous ratio.

Calculational models for phase displacement that
honor the rich behavior occurring under the compet-
ing influences of capillary, viscous, and gravitational
forces are in their infancy. While solution of the
Navier—Stokes equations with the relevant inter-phase
boundary conditions (including dynamic contact an-
gles) at present seems intractable at the scale of
individual fractures, approaches based on further
modifications of MIP show great promise. MIP with
in-plane curvature can be extended to include phase
density differences and reproduce both gravity
stabilized and destabilized displacements through
fractures [8]. As illustrated in Fig. 2 top, simulations
show the stabilizing influence of gravity to decrease
complication of the displacement front, with a corre-
sponding decrease in entrapped phase saturation,

complication, and cluster size [Glass, unpublished].
For gravity-destabilized displacements, where the
phase structure has been found to fragment behind
the fingertip [14], criteria for the re-invasion of aper-
tures by the displaced phase must include a gravity
siphon within the finger. An illustrative simulation
employing such an approach is shown in Fig. 2 bottom
and matches experimental data well [Glass, unpub-
lished]. In-plane curvature is found to damp the frag-
mentation process, yielding a macroscopic fingertip,
with representative phase structure and blob flow
behind. This is in contrast to a simpler conceptualiza-
tion of the re-invasion process that neglects in-plane
curvature and leads to fragmentation at the aperture
correlation scale, even in horizontal fractures [23].

Viscous forces can also be incorporated into forms
of MIP, with applications to date only for porous
media [24°,25,26]. In the simplest approach, viscous
stabilized displacements include a linear gradient
similar to that for phase density differences. For this
case, the simulation shown in Fig. 2 top also illus-
trates a similarly stabilized viscous displacement. Vis-
cous destabilized displacements have not yet been
considered using an MIP approach; however, in
porous media and Hele—Shaw cells, diffusion-limited
aggregation (DLA) has been used (e.g. [4®]). The
DLA process produces highly complicated structures
dominated by noise; however, manipulating the condi-
tions for local growth can produce more compact
structures that provide a first-order approximation of
surface tension (e.g. [27].

4. Flow processes within a phase

At low Reynolds number, the Stokes equations are
expected to fully describe steady flow of a homoge-
neous, incompressible fluid phase in a variable aper-
ture fracture. To circumvent the data and computa-
tional requirements for numerical solution of the
three-dimensional Stokes equations, a two-dimen-
sional, depth-averaged approximation known as the
Reynolds equation is commonly used to simulate frac-
ture flow. Although attractive from a computational
standpoint, this approach assumes that local flow ex-
hibits a parabolic velocity profile, as would occur
between parallel plates. Analytical studies (e.g.
[28°,29]) suggest that the Reynolds equation will be
appropriate for fracture flow at small Reynolds num-
ber, provided that aperture mean and variance are
significantly smaller than the characteristic length
scale of the aperture variation (i.e. spatial correlation).

Simulation of Stokes flow in two-dimensional frac-
ture cross-sections using continuum methods [30], and
more recently, lattice—Boltzmann or lattice—gas
methods [31°,32,33], suggest that the assumption of a
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Fig. 2. Phase displacement with the addition of gravity forces: stabilizing vs. destabilizing. An MIP model including both aperture-induced and
in-plane curvature, as well as gravity forces, is used to simulate wetting phase invasion from the left in the same spatially correlated random
aperture field as used in Fig. 1 with C=0.4. In the top simulation, gravity is acting to the left (stabilizing); black denotes entrapped
non-wetting phase, while the color sequence purple—blue—green—yellow—orange—red denotes invasion order. In the bottom simulation, gravity
is acting to the right (destabilizing); color once again denotes invasion order at the point where the finger has reached the bottom of the
aperture field with black denoting nonwetting phase. For the gravity-destabilized case, MIP has been augmented to include criteria for the
re-invasion of apertures with the non-wetting phase. Note the saturated fingertip at the bottom of the figure, with the fragmented wetting
phase trail behind. Intermixed color out of sequence shows locations where phase structure has changed as pulses of invading phase coursed

downward to supply the growing tip.

parabolic velocity profile may not be universally valid;
deviation from a parabolic profile has also been
observed experimentally [34]. Three-dimensional
simulation of Stokes flow in a range of synthetic
aperture fields has demonstrated that the Reynolds
equation may overestimate flow by as much as a
factor of two [35°]. Experiments in replicas of natural
fractures (e.g. [36,37]) have produced conflicting re-
sults regarding applicability of the Reynolds equation;

direct evaluations are hindered by the difficulty in
obtaining aperture data at appropriate accuracy
[38%¢]. A study that obtained such data has recently
been accomplished by Nicholl et al. [39®], who con-
sidered two analog fractures specifically designed to
test the Reynolds equation. Simulations on highly
accurate aperture data overestimated experimental
flow rates by 22-47%. They concluded that head loss
associated with three-dimensional flow components
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was the root cause of the discrepancy, and that local
corrections to the Reynolds equation modified, but
did not eliminate, the discrepancies.

At the macroscopic scale, effective medium theory
has been employed to estimate a hydraulic aperture
(b,,), which, when used in the cubic law, would ade-
quately represent fracture transmissivity. Gelhar [40]
showed that for lognormal aperture distributions, b,
is the geometric mean of the distribution; Zimmer-
man and Bodvarsson [28°] discuss other estimates for
b, . For two-phase conditions, it is common to express
the effective permeability to a given phase (k;) rela-
tive to permeability under single-phase conditions
(k,); fracture relative permeability (k,) is then given
by: k,=k;/k,. Early efforts to calculate k, used
either SP [41] or IP [42] to define phase structure as a
function of pressure, and then computed flow within
each phase using the Reynolds equation. While limited
due to the use of SP and IP algorithms for phase
structure, results of these initial studies suggested the
importance of phase interference in determining k..
Subsequent experiments within a horizontal fracture
with concurrent two-phase flow further emphasized
the importance of phase interference, with k, for
wetting and non-wetting phases summing to much less
than [19°].

In the absence of gravity or viscous fingering, the
displacement of one phase by another in fractures
much larger than the aperture correlation scale leads
to a ‘satiated’ state, where the defending phase be-
comes fully entrapped. For these conditions, experi-
ments by Nicholl and Glass [9°], where the entrapped
phase structure was varied within a measured aper-
ture field, suggest that k; differs from k, due to a
change in the statistics of the flowing apertures, re-
duced cross-sectional area available for flow, and in-
plane tortuosity induced by the entrapped phase. They
also noted that there was little difference in k,
between trials at similar wetting phase saturation,
even though the phase structures (and transport be-
havior) were vastly different. Combination of these
observations with effective medium theory yields a
conceptual model [43°] for satiated relative perme-
ability (k)

2 1/2 s\ "1/2
km=TSf[—<bf>2} 1+ 9022) 1+ %fz)
(b) (b) (be)
A B 3)

where T represents in-plane tortuosity, S; saturation
by the flowing phase, (b) mean aperture, and o
aperture variance; subscripted parameters are taken
only over apertures filled by the flowing phase, as
opposed to all apertures (no subscript). Of these

factors, 7 was found to be the most important, fol-
lowed by S;, (A), and finally, (B).

To further illustrate the importance of phase struc-
ture on flow within the fracture, Fig. 3 shows stream-
lines from examples of flow simulations within the
final satiated phase structures shown previously in
Fig. 1. Where the fracture is filled primarily by the
flowing phase, streamlines are nearly linear and ex-
hibit short wavelength fluctuations caused by local
aperture variability. However, on a macroscopic scale,
the entrapped phase introduces significant tortuosity
by obstructing flow, and this tortuosity greatly de-
creases the permeability between the two fields. As
presented in Sections 2 and 3, if we consider that
beyond C, the angle of the fracture with respect to
gravity, fluid densities and viscosities, invasion direc-
tion (gravity/viscous stabilized /destabilized), dis-
placement velocity, as well as initial and boundary
conditions, all influence phase structure, we see that
the parameterization of an effective property such as
relative permeability may be quite complicated.

5. Transport processes within a phase

Within a flowing phase, dispersion of a conservative
solute results from interaction between diffusion and
advection. The Peclet number (Pe = V{b) /D, where
D,, is the molecular diffusion and V' the mean flow
velocity) weighs the relative importance of each. Ad-
ditionally, velocity will vary, both across the fracture
aperture (approximately parabolic velocity profile) and
in the plane of the fracture (heterogeneity in the
aperture field and the morphology of any entrapped
phase). To understand the interaction between diffu-
sion and advection in a highly variable velocity field, it
is useful to consider parametric models that describe
the influence of velocity variations on the effective
longitudinal dispersion (D, ) as a function of aperture
field statistics, mean velocity through the fracture,
and phase saturation /structure.

For steady, single-phase flow between parallel
plates, D; results solely from the parabolic velocity
profile across the aperture (i.e. Taylor dispersion) and
is proportional to Pe?. In a variable aperture field,
in-plane velocity variations give rise to geometric dis-
persion or ‘macrodispersion’, with D, proportional to
Pe. Gelhar [40] used stochastic analysis, based on the
depth-averaged velocities predicted by the Reynolds
equation, to derive a theoretical expression for D in
stationary random-aperture fields proportional to the
variance and the correlation length of the log-aper-
ture field, and the mean velocity (or equivalently, Pe)
in the fracture. Laboratory-scale solute transport ex-
periments in saturated (single-phase) variable-aper-
ture fractures have exhibited a non-linear relationship
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Fig. 3. Flow within fractures containing an entrapped phase: influence of curvature number, C. Using the approach of Nicholl et al. [43®], the
Reynolds equation is solved within the wetting phase for flow from left to right in the fracture with final satiated phase structures of Fig. 1.
The flowing wetting phase is shown in white, gray denotes entrapped non-wetting phase, and streamlines are in black. Constant head boundary
conditions were established in large aperture ‘manifolds’ added to each end of the phase structure; the long edges were held as no-flow
boundaries. Streamlines begin uniformly spaced within the inflow manifold, converge to enter the phase structure, and then proceed to the
downstream end of the fracture (right side). Macroscopic tortuosity induced by the entrapped phase and satiated relative permeabilities (0.056
for C =0.2 and 0.177 for C = 0.4) are representative of experimental observations [9®,10®,43®].

between D; and Pe [44,45°], suggesting that D; may
result from a combination of Taylor dispersion and
macrodispersion. Based on a scaling analysis, Roux et
al. [46°] suggested that D, will be proportional to the
sum of these two components. Subsequently, Detwiler
et al. [47°] investigated the relationship between Dy
and Pe for solute transport in a measured aperture
field, demonstrating that D; can be estimated rea-
sonably well over a wide range of Pe by:

D, /D,, = a,Pe + a Pe? 4)

where o, is given by Gelhar’s expression for
macrodispersivity in a variable-aperture fracture, and
o =1/210, the theoretical expression for Taylor dis-
persion between parallel plates. A unified theoretical
analysis [Mallikamas and Rajaram, unpublished] fur-
ther clarifies the foundations of Eq. (4), in particular
the additivity of macrodispersion and Taylor disper-
sion. Experimentally measured values of D; [47°]
and the theoretical predictions based on Eq. (4) differ
by approximately 25-40%, apparently due to the in-

ability of the Reynolds equation (upon which the
theory is based) to fully describe the three-dimensional
velocity field within the fracture. Thus, more accurate
estimates of D; must be based on improved two-
dimensional models of flow, or the three-dimensional
Stokes equations.

Experimental studies of solute transport in frac-
tures containing an entrapped phase have reported
rapid solute movement in channels, holdup of solute
in ‘dead zones’, and diffusive exchange between the
two (e.g. [9°,10°]). Based on these observations, it is
expected that the travel distance required for Fickian
behavior would be substantially longer than under
single-phase conditions. In addition, transport was
observed to be very sensitive to differences in phase
structure, even at similar values of phase saturation
and relative permeability. These results were under-
scored in a recent study, where small errors in aper-
ture field measurement were shown to have large
influences on MIP phase-structure simulations, which
in turn significantly influence the nature of calculated
solute breakthrough curves [38°®]. In a similar man-
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Fig. 4. Transport within fracture containing an entrapped phase:
influence of curvature number, C. Particle tracking is used to
simulate solute transport (from left to right) through the final
satiated phase structures generated by the MIP model as shown in
Fig. 1 and flow fields shown in Fig. 3. These solute concentration
breakthrough curves (BTCs) measured at the downstream boundary
of the fracture exhibit multiple peaks and are quite different for
the two fields. A BTC in the absence of an entrapped phase is also
shown.

ner, we illustrate the critical influence of phase struc-
ture by simulating transport through the flow fields
shown in Fig. 3. Solute breakthrough curves (BTCs)
for these fields, as well as for the single-phase case,
are plotted in Fig. 4. For the single-phase case, the
BTC is approximately Gaussian, indicating that, at the
scale of this fracture, it may be appropriate to de-
scribe D, using Eq. (4). However, for fields with
entrapped phase, the BTCs become multi-modal and
asymmetric, suggesting that a Fickian description of
D, is inappropriate. The dependence on phase struc-
ture and potential for non-Fickian behavior will com-
plicate the development of an effective expression for
D, in fractures beyond that recently proposed for
unsaturated porous media [48].

6. Mass transfer between phases

In addition to displacement processes (see Sections
2 and 3), inter-phase mass transfer may cause changes
in phase structure. Examples of inter-phase mass
transfer include: dissolution of an entrapped non-
aqueous phase liquid (NAPL) into a flowing aqueous
phase; dissolution and growth of gas bubbles; and
dissolution or deposition of the fracture walls. Al-
though dissolution of an immobile phase has been
investigated extensively in laboratory-scale porous
media (e.g. [49-51]), there are few studies in rough-
walled fractures. There has also been recent interest
in quantifying the dissolution dynamics of immobile
NAPLs using pore-scale or other high-resolution
models (e.g. [52-55]). Such models can incorporate
details of the NAPL distribution at the pore-scale,

and thus serve as a framework for predicting mass
transfer rates based on pore structure parameters.

The only investigation of entrapped-phase dissolu-
tion in rough-walled fractures that we are aware of
was reported by Glass and Nicholl [10°®]. They showed
that regions of high mass transfer did not correspond
to locations of cluster shrinkage, nor was the path
that an individual entrapped cluster shrinks given by
SP or IP displacement models. However, subsequent
MIP model application has shown good correspon-
dence for cluster shrinkage path [11°®]. Based on
these results, and those presented in Sections 4 and 5,
a depth-averaged computational approach has re-
cently been developed for entrapped-phase dissolu-
tion [Detwiler, Rajaram and Glass, unpublished] that
couples: fluid flow (modeled using the Reynolds equa-
tion in the flowing phase) and solute transport (mod-
eled with the advection—diffusion equation); mass
transfer from the entrapped phase into the flowing
phase (assuming equilibrium at the interfaces); and
consequent interface movement (modeled using the
MIP algorithm). Simulations using this model are in
excellent agreement with new experiments, reproduc-
ing both the temporal phase-structure shrinkage and
total NAPL mass very well.

To illustrate the influence of the entrapped phase
structure on the dissolution process, we apply this
coupled model to the final satiated-phase structures
presented in Figs. 1 and 3. Fracture-scale NAPL
saturation (Sy) and relative permeability (k) are
plotted against time for the duration of the simulation
in Fig. 5a. For the C = 0.4 field, S is initially almost
half that of the C = 0.2 field, yet the time required for
complete dissolution from the two fields is almost
identical. An explanation for this behavior is evident
in a plot of total mass-transfer rate (J) and k,
against water saturation (S;) (Fig. 5b). The relative
permeabilities for the two fields exhibit similar depen-
dence on S;, but J displays markedly different behav-
ior for the two fields. For the C =04 field, J de-
creases steadily until all of the NAPL is dissolved,
while for the C = 0.2 field, J first increases to almost
twice its initial value before beginning to decrease. As
evident in Fig. 6, a large part of this behavior results
from the differential dissolution-channel growth
within the entrapped phase, once again demonstrating
the sensitivity of mass transfer to entrapped phase
structure.

Highly fingered growth of dissolution channels
within the entrapped phase has also been observed in
the context of porous media [56]; a linear stability
analysis has been used to quantify regimes of flow
velocity and initial saturation under which a plane
dissolution front becomes unstable [57]. These results
for entrapped-phase dissolution are similar to those
obtained in the context of reactive infiltration in
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Fig. 5. Mass transfer between phases: dissolution of an entrapped phase and the influence of curvature number, C. Dissolution of the
entrapped non-wetting phase from the C = 0.2 (thin lines) and C = 0.4 (thick lines) final satiated fields shown in Fig. 1 is simulated using the
model developed by Detwiler, Rajaram, and Glass [unpublished]. The difference in the initial structure of the entrapped NAPL and the initial
NAPL saturations (Sy) results in different behavior of the dissolution process with time (a). These differences can be understood by observing
the differences in total mass-transfer rates (J) from the fracture as the NAPL dissolves (b). Though the NAPL dissolution process is very
sensitive to the initial phase structure, the fracture scale relative permeability (k,;) appears to be strongly dependent on the water saturation
(S;) in the fracture and less sensitive to differences in non-wetting phase structure. This result was also suggested by the experiments of

Nicholl and Glass [9®].

soluble porous media (e.g. [58,59]). The related prob-
lem of dissolution of fracture walls by reactive fluids
during single-phase flow has been recently investi-
gated computationally [60°®,61%,62], and experimen-
tally [63]. Faster dissolution growth rates along prefer-
ential flow channels have been shown to lead to faster
growth along these channels and a single, dominant
dissolution-channel in time [60°®,61]. Faster dissolu-
tion growth rates along preferential flow paths leads
to faster channel growth along these paths. The fastest
growing dissolution channel inhibits the growth of the
other channels, and a single finger dominates. This
behavior is consistent with Laplacian growth models,
such as diffusion-limited aggregation (DLA) involving
a linear flow equation, in which a single finger is
predicted to dominate at large time (e.g. [64].

7. Conclusions

Under conditions of two-phase, immiscible fluid
flow, phase structure within the fracture ultimately
controls the fluid pressure-saturation relations,
permeability to each phase, solute dispersion within
each phase, and inter-phase mass transfer. Research
over the past 10 years has shown that phase structure
will be a function of both the aperture field and the
two-phase flow processes themselves. Capillary, gravi-
tational, and viscous forces, in combination with
boundary and initial conditions, have all been demon-
strated to play roles in the determination of fracture
phase structure. In the past 2 years, a suite of compu-

tational models has been developed and tested to
simulate the development of phase structure, as well
as flow and transport within each phase, and inter-
phase mass transfer. Simulations in the absence of
gravity or viscous forces show that entrapped phase
structure varies systematically with the curvature
number; flowing phase saturation increases and in-
plane tortuosity decreases as the curvature number
increases. These changes systematically influence the
relative permeability at satiation and the transport of
solute though the flowing phase, both of which funda-
mentally control inter-phase mass transfer. We believe
that full parametric studies to consider the efficacy
and parameterization of fracture-scale constitutive
behavior for such situations are now in order.
Further extensions of this overall approach to in-
clude the influence of viscous and gravitational forces
will facilitate further understanding of two-phase flow
and transport processes under general conditions.
However, advances on this front, even if more stimu-
lating, will be slower. In the case of unstable displace-
ments, experiments and modeling studies show highly
channelized phase structures and flow paths, which in
the case of gravity fingering, may pulsate and behave
chaotically. In addition, the coupling between dissolu-
tion-precipitation or exsolution (e.g. degassing) reac-
tions and permeability (or relative permeability) can
lead to complicated flow-channeling phenomena and
phase structure evolution. A general understanding of
the morphology, connectivity, and temporal dynamics
of all these channelized structures in rough-walled
fractures is yet to be developed, and is a promising
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C=04

Fig. 6. Mass transfer between phases: dissolved phase concentration fields and the influence of curvature number, C. Dissolved non-wetting
phase concentration fields as simulated using the model developed by Detwiler, Rajaram, and Glass [unpublished] are shown after 40% of the
NAPL has been removed for the final satiated fields shown in Fig. 1. Gray denotes entrapped phase, while the color sequence
black—blue—green—yellow—orange—red denotes non-wetting phase concentrations between 0 and the solubility limit within the flowing wetting
phase. Dissolution channels develop down either side of the fracture, where entrapped phase could escape in the original phase displacement
simulations. Internal dissolution channels develop very differently between the two fields due to the different initial satiated phase structures.

area for further research. This is a challenging prob-
lem, since several classical approaches to studying
instabilities (e.g. linear stability analysis) do not ex-
plicitly recognize the role of medium heterogeneity,
nor the mechanisms behind phase pulsation. Thus, it
appears that a new paradigm must be developed to
unify disparate observations in variable-aperture frac-
tures and other disordered media.
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